$A= a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+...$
$B= b_0+b_1x+b_2x^2+b_3x^3+b_4x^4+...$
The Cauchy product of two power series are defined as below:
$A\cdot B= a_0b_0+(a_0b_1+a_1b_0)x+(a_0b_2+a_1b_1+a_2b_0)x^2+...$
$(a_0b_3+a_1b_2+a_2b_1+a_3b_0)x^3+(a_0b_4+a_1b_3+a_2b_2+a_3b_1+a_4b_0)x^4$
$[x^0]a_0b_0$
$[x^1]a_0b_1+a_1b_0$
$[x^2]a_0b_2+a_1b_1+a_2b_0$
$[x^3]a_0b_3+a_1b_2+a_2b_1+a_3b_0$
$[x^4]a_0b_4+a_1b_3+a_2b_2+a_3b_1+a_4b_0$
$[x^5]a_0b_5+a_1b_4+a_2b_3+a_3b_2+a_4b_1+a_5b_0$
$[x^6]a_0b_6+a_1b_5+a_2b_4+a_3b_3+a_4b_2+a_5b_1+a_6b_0$
$[x^7]a_0b_7+a_1b_6+a_2b_5+a_3b_4+a_4b_3+a_5b_2+a_6b_1+a_7b_0$
$[x^8]a_0b_8+a_1b_7+a_2b_6+a_3b_5+a_4b_4+a_5b_3+a_6b_2+a_7b_1+a_8b_0$
$[x^9]a_0b_9+a_1b_8+a_2b_7+a_3b_6+a_4b_5+a_5b_4+a_6b_3+a_7b_2+a_8b_1+a_9b_0$
$[x^{10}]a_0b_10+a_1b_9+a_2b_8+a_3b_7+a_4b_6+a_5b_5+a_6b_4+a_7b_3+a_8b_2+a_9b_1+a_{10}b_0$
This method of multiplying series avoid the issue of misalignment of the long multiplication technique. It can be generalized to form the method of indeterminate coefficients, which I will introduce in another post.
Series representations for $\sin^2(x)$
To obtain the series for this function, rewrite $\sin^2(x)$ as $\sin(x)\cdot\sin(x)$. Let $a_n$ denotes the coefficients of the first $\sin(x)$ and $b_n$ denotes the coefficieints of $\sin(x)$. We notice that $\sin(x)$ is an odd function, therefore, all even terms are going to be $0$. The coeffcients are:
$a_0=0; b_0=0$
$a_1=1; b_1=1$
$a_1=1; b_1=1$
$a_3=-\dfrac{1}{3!}; b_3=-\dfrac{1}{3!}$
$a_5=\dfrac{1}{5!}; b_5=\dfrac{1}{5!}$
$a_7=-\dfrac{1}{7!}; b_7=-\dfrac{1}{7!}$
$a_9=\dfrac{1}{9!}; b_9=\dfrac{1}{9!}$
$a_{11}=-\dfrac{1}{11!}; b_{11}=-\dfrac{1}{11!}$
Notice that $sin^2(x)$ is an even function. Therefore, all odd terms are going to be $0$. If we apply the Cauchy triangle, we will have:
$[x^0]a_0b_0$
$[x^0]=0\cdot0=0$
$[x^2]a_0b_2+a_1b_1+a_2b_0$
$[x^2]=0\cdot\left(-\dfrac{1}{3!}\right)+1\cdot1 \left(-\dfrac{1}{3!}\right)\cdot 0 =1$
$[x^4]a_0b_4+a_1b_3+a_2b_2+a_3b_1+a_4b_0$
$[x^4]=0+\left(-\dfrac{1}{3!}\right)+0+\left(-\dfrac{1}{3!}\right)+0=-\dfrac{1}{3}$
$[x^6]a_0b_6+a_1b_5+a_2b_4+a_3b_3+a_4b_2+a_5b_1+a_6b_0$
$[x^6]=0+\left(\dfrac{1}{5!}\right)+0+\left(-\dfrac{1}{3!}\right)\left(-\dfrac{1}{3!}\right)+0+\dfrac{1}{5!}=\dfrac{2}{45}$
$[x^8]a_0b_8+a_1b_7+a_2b_6+a_3b_5+a_4b_4+a_5b_3+a_6b_2+a_7b_1+a_8b_0$
$[x^8]=0+\left(-\dfrac{1}{7!}\right)+0+\left(-\dfrac{1}{3!}\right)\left(\dfrac{1}{5!}\right)+0+\left(\dfrac{1}{5!}\right)\left(-\dfrac{1}{3!}\right)+0+\left(-\dfrac{1}{7!}\right)=-\dfrac{1}{315}$
$[x^{10}]a_0b_10+a_1b_9+a_2b_8+a_3b_7+a_4b_6+a_5b_5+a_6b_4+a_7b_3+a_8b_2+a_9b_1+a_{10}b_0$
$[x^{10}]= 0+\left(\dfrac{1}{9!}\right)+0+\left(-\dfrac{1}{3!}\right)\left(-\dfrac{1}{7!}\right)+0+\left(\dfrac{1}{5!}\right)\left(\dfrac{1}{5!}\right)+0+\left(-\dfrac{1}{7!}\right)\left(-\dfrac{1}{3!}\right)+0$
$+\dfrac{1}{9!}=\dfrac{2}{14175}$
$[x^{12}]a_0b_{12}+a_1b_{11}+a_2b_{10}+a_3b_9+a_4b_8+a_5b_7+a_6b_6+a_7b_5+a_8b_4+$
$a_9b_3+a_{10}b_2+a_{11}b_1+a_{12}b_0$
$[x^{12}]= 0+\left(-\dfrac{1}{11!}\right)+0+\left(-\dfrac{1}{3!}\right)\left(\dfrac{1}{9!}\right)+0+\left(\dfrac{1}{5!}\right)\left(-\dfrac{1}{7!}\right)+0+\left(\dfrac{1}{7!}\right)\left(-\dfrac{1}{3!}\right)+0+$
$\left(\dfrac{1}{9!}\right)\left(-\dfrac{1}{3!}\right)-\dfrac{1}{11!}=-\dfrac{2}{467775}$
So we are finally able to derive the series representation for $\sin^2(x)$:
$\sin^2(x)=x^2-\dfrac{1}{3}x^4+\dfrac{2}{45}x^6-\dfrac{1}{315}x^8+\dfrac{2}{14715}x^{10}-\dfrac{2}{467775}x^{12}+O(x^{14})$
Series representations for $\cos^2(x)$
Since $\cos(x)$ is an even function, all odd terms are zero. The coefficients are:
$a_0=1; b_0=1$
$a_2=-\dfrac{1}{2!}; b_2=-\dfrac{1}{2!}$
$a_4=\dfrac{1}{4!}; b_4=\dfrac{1}{4!}$
$a_6=-\dfrac{1}{6!}; b_6=-\dfrac{1}{6!}$
$a_8=\dfrac{1}{8!}; b_8=\dfrac{1}{8!}$
$a_{12}=-\dfrac{1}{12!}; b_{12}=-\dfrac{1}{12!}$
Notice that $\cos^2(x)$ is an even function. Therefore, all odd terms are going to be $0$. If we apply the Cauchy triangle, we will have:
$[x^0]a_0b_0$
$[x_0]=1\cdot1=1$
$[x^2]a_0b_2+a_1b_1+a_2b_0$
$[x^2]=-\dfrac{1}{2!}+0-\dfrac{1}{2!}\cdot 0 =-1$
$[x^4]a_0b_4+a_1b_3+a_2b_2+a_3b_1+a_4b_0$
$[x^4]=\dfrac{1}{4!}+0+\left(-\dfrac{1}{2!}\right)\left(-\dfrac{1}{2!}\right)+0+\dfrac{1}{4!}=\dfrac{1}{3}$
$[x^6]a_0b_6+a_1b_5+a_2b_4+a_3b_3+a_4b_2+a_5b_1+a_6b_0$
$[x^6]=-\dfrac{1}{6!}+0+\left(-\dfrac{1}{2!}\right)\left(-\dfrac{1}{6!}\right)+0+\left(\dfrac{1}{4!}\right)\left(-\dfrac{1}{2!}\right)+0+\left(-\dfrac{1}{6!}\right)=-\dfrac{2}{45}$
$[x^8]a_0b_8+a_1b_7+a_2b_6+a_3b_5+a_4b_4+a_5b_3+a_6b_2+a_7b_1+a_8b_0$
$[x^8]=\dfrac{1}{8!}+0+\left(-\dfrac{1}{2!}\right)\left(-\dfrac{1}{6!}\right)+0+\left(\dfrac{1}{4!}\right)\left(\dfrac{1}{4!}\right)+0+\left(-\dfrac{1}{6!}\right)\left(-\dfrac{1}{2!}\right)+0+\dfrac{1}{8!}$
$=\dfrac{1}{315}$
$[x^{10}]a_0b_10+a_1b_9+a_2b_8+a_3b_7+a_4b_6+a_5b_5+a_6b_4+a_7b_3+a_8b_2+a_9b_1+a_{10}b_0$
$[x^{10}]= -\dfrac{1}{10!}+0+\left(-\dfrac{1}{2!}\right)\left(\dfrac{1}{8!}\right)+0+\left(\dfrac{1}{4!}\right)\left(-\dfrac{1}{6!}\right)+0+\left(-\dfrac{1}{6!}\right)\left(\dfrac{1}{4!}\right)+0$
$+\left(\dfrac{1}{8!}\right)\left(-\dfrac{1}{2!}\right)+0-\dfrac{1}{10}=-\dfrac{2}{14175}$
$[x^{12}]a_0b_{12}+a_1b_{11}+a_2b_{10}+a_3b_9+a_4b_8+a_5b_7+a_6b_6+a_7b_5+a_8b_4+$
$a_9b_3+a_{10}b_2+a_{11}b_1+a_{12}b_0$
$[x^{12}]= \dfrac{1}{12!}+0+\left(-\dfrac{1}{2!}\right)\left(-\dfrac{1}{10!}\right)+0+\left(\dfrac{1}{4!}\right)\left(\dfrac{1}{8!}\right)+0+\left(-\dfrac{1}{6!}\right)\left(-\dfrac{1}{6!}\right)+0$
$+\left(\dfrac{1}{8!}\right)\left(\dfrac{1}{4!}\right)+0+\left(-\dfrac{1}{10!}\right)\left(-\dfrac{1}{2!}\right)+\dfrac{1}{12!}=\dfrac{2}{467775}$
So we are finally able to derive the series representation for $\cos^2(x)$:
$\cos^2(x)=1-x^2+\dfrac{1}{3}x^4-\dfrac{2}{45}x^6+\dfrac{1}{315}x^8-\dfrac{2}{14715}x^{10}+\dfrac{2}{467775}x^{12}+O(x^{14})$
If we add $\sin^2(x)+\cos^2(x)$, we will have:
$\color{red}{x^2-\dfrac{1}{3}x^4+\dfrac{2}{45}x^6-\dfrac{1}{315}x^8+\dfrac{2}{14715}x^{10}-\dfrac{2}{467775}x^{12}+}...$
$+1\color{red}{-x^2+\dfrac{1}{3}x^4-\dfrac{2}{45}x^6+\dfrac{1}{315}x^8-\dfrac{2}{14715}x^{10}+\dfrac{2}{467775}x^{12}+}=1$
Red terms denote elimination
This gives us the familiar identity $\color{green}{\sin^2(x)+\cos^2(x)=1}$
Series representation for $\sinh^2(x)$ and $\cosh^2(x)$
The Maclaurin series for $\sinh^2(x)$ and $\cosh^2(x)$ are going to be very similar to $\sin^2(x)$ and $\cos^2(x)$, except that the signs are all positive. We can derive the series using the same method that we did for $\sin^2(x)$. This is left to the readers as an excercise.
$\sinh^2(x)=x^2+\dfrac{1}{3}x^4+\dfrac{2}{45}x^6+\dfrac{1}{315}x^8+\dfrac{2}{14715}x^{10}+\dfrac{2}{467775}x^{12}+O(x^{14})$
$\cosh^2(x)=1+x^2+\dfrac{1}{3}x^4+\dfrac{2}{45}x^6+\dfrac{1}{315}x^8+\dfrac{2}{14715}x^{10}+\dfrac{2}{467775}x^{12}+O(x^{14})$
Subtracting $\cosh^2(x)$ from $\sinh^2(x)$, we will have:
$1+\color{red}{x^2+\dfrac{1}{3}x^4+\dfrac{2}{45}x^6+\dfrac{1}{315}x^8+\dfrac{2}{14715}x^{10}+\dfrac{2}{467775}x^{12}+}...-$
$\color{red}{x^2-\dfrac{1}{3}x^4-\dfrac{2}{45}x^6-\dfrac{1}{315}x^8-\dfrac{2}{14715}x^{10}-\dfrac{2}{467775}x^{12}}...=1$
So we obtain the familiar identity: $\color{green}{\cosh^2(x)-\sinh^2(x)=1}$
No comments:
Post a Comment