A=a0+a1x+a2x2+a3x3+a4x4+...
B=b0+b1x+b2x2+b3x3+b4x4+...
The Cauchy product of two power series are defined as below:
A⋅B=a0b0+(a0b1+a1b0)x+(a0b2+a1b1+a2b0)x2+...
(a0b3+a1b2+a2b1+a3b0)x3+(a0b4+a1b3+a2b2+a3b1+a4b0)x4
[x0]a0b0
[x1]a0b1+a1b0
[x2]a0b2+a1b1+a2b0
[x3]a0b3+a1b2+a2b1+a3b0
[x4]a0b4+a1b3+a2b2+a3b1+a4b0
[x5]a0b5+a1b4+a2b3+a3b2+a4b1+a5b0
[x6]a0b6+a1b5+a2b4+a3b3+a4b2+a5b1+a6b0
[x7]a0b7+a1b6+a2b5+a3b4+a4b3+a5b2+a6b1+a7b0
[x8]a0b8+a1b7+a2b6+a3b5+a4b4+a5b3+a6b2+a7b1+a8b0
[x9]a0b9+a1b8+a2b7+a3b6+a4b5+a5b4+a6b3+a7b2+a8b1+a9b0
[x10]a0b10+a1b9+a2b8+a3b7+a4b6+a5b5+a6b4+a7b3+a8b2+a9b1+a10b0
This method of multiplying series avoid the issue of misalignment of the long multiplication technique. It can be generalized to form the method of indeterminate coefficients, which I will introduce in another post.
Series representations for sin2(x)
To obtain the series for this function, rewrite sin2(x) as sin(x)⋅sin(x). Let an denotes the coefficients of the first sin(x) and bn denotes the coefficieints of sin(x). We notice that sin(x) is an odd function, therefore, all even terms are going to be 0. The coeffcients are:
a0=0;b0=0
a1=1;b1=1
a1=1;b1=1
a3=−13!;b3=−13!
a5=15!;b5=15!
a7=−17!;b7=−17!
a9=19!;b9=19!
a11=−111!;b11=−111!
Notice that sin2(x) is an even function. Therefore, all odd terms are going to be 0. If we apply the Cauchy triangle, we will have:
[x0]a0b0
[x0]=0⋅0=0
[x2]a0b2+a1b1+a2b0
[x2]=0⋅(−13!)+1⋅1(−13!)⋅0=1
[x4]a0b4+a1b3+a2b2+a3b1+a4b0
[x4]=0+(−13!)+0+(−13!)+0=−13
[x6]a0b6+a1b5+a2b4+a3b3+a4b2+a5b1+a6b0
[x6]=0+(15!)+0+(−13!)(−13!)+0+15!=245
[x8]a0b8+a1b7+a2b6+a3b5+a4b4+a5b3+a6b2+a7b1+a8b0
[x8]=0+(−17!)+0+(−13!)(15!)+0+(15!)(−13!)+0+(−17!)=−1315
[x10]a0b10+a1b9+a2b8+a3b7+a4b6+a5b5+a6b4+a7b3+a8b2+a9b1+a10b0
[x10]=0+(19!)+0+(−13!)(−17!)+0+(15!)(15!)+0+(−17!)(−13!)+0
+19!=214175
[x12]a0b12+a1b11+a2b10+a3b9+a4b8+a5b7+a6b6+a7b5+a8b4+
a9b3+a10b2+a11b1+a12b0
[x12]=0+(−111!)+0+(−13!)(19!)+0+(15!)(−17!)+0+(17!)(−13!)+0+
(19!)(−13!)−111!=−2467775
So we are finally able to derive the series representation for sin2(x):
sin2(x)=x2−13x4+245x6−1315x8+214715x10−2467775x12+O(x14)
Series representations for cos2(x)
Since cos(x) is an even function, all odd terms are zero. The coefficients are:
a0=1;b0=1
a2=−12!;b2=−12!
a4=14!;b4=14!
a6=−16!;b6=−16!
a8=18!;b8=18!
a12=−112!;b12=−112!
Notice that cos2(x) is an even function. Therefore, all odd terms are going to be 0. If we apply the Cauchy triangle, we will have:
[x0]a0b0
[x0]=1⋅1=1
[x2]a0b2+a1b1+a2b0
[x2]=−12!+0−12!⋅0=−1
[x4]a0b4+a1b3+a2b2+a3b1+a4b0
[x4]=14!+0+(−12!)(−12!)+0+14!=13
[x6]a0b6+a1b5+a2b4+a3b3+a4b2+a5b1+a6b0
[x6]=−16!+0+(−12!)(−16!)+0+(14!)(−12!)+0+(−16!)=−245
[x8]a0b8+a1b7+a2b6+a3b5+a4b4+a5b3+a6b2+a7b1+a8b0
[x8]=18!+0+(−12!)(−16!)+0+(14!)(14!)+0+(−16!)(−12!)+0+18!
=1315
[x10]a0b10+a1b9+a2b8+a3b7+a4b6+a5b5+a6b4+a7b3+a8b2+a9b1+a10b0
[x10]=−110!+0+(−12!)(18!)+0+(14!)(−16!)+0+(−16!)(14!)+0
+(18!)(−12!)+0−110=−214175
[x12]a0b12+a1b11+a2b10+a3b9+a4b8+a5b7+a6b6+a7b5+a8b4+
a9b3+a10b2+a11b1+a12b0
[x12]=112!+0+(−12!)(−110!)+0+(14!)(18!)+0+(−16!)(−16!)+0
+(18!)(14!)+0+(−110!)(−12!)+112!=2467775
So we are finally able to derive the series representation for cos2(x):
cos2(x)=1−x2+13x4−245x6+1315x8−214715x10+2467775x12+O(x14)
If we add sin2(x)+cos2(x), we will have:
x2−13x4+245x6−1315x8+214715x10−2467775x12+...
+1−x2+13x4−245x6+1315x8−214715x10+2467775x12+=1
Red terms denote elimination
This gives us the familiar identity sin2(x)+cos2(x)=1
Series representation for sinh2(x) and cosh2(x)
The Maclaurin series for sinh2(x) and cosh2(x) are going to be very similar to sin2(x) and cos2(x), except that the signs are all positive. We can derive the series using the same method that we did for sin2(x). This is left to the readers as an excercise.
sinh2(x)=x2+13x4+245x6+1315x8+214715x10+2467775x12+O(x14)
cosh2(x)=1+x2+13x4+245x6+1315x8+214715x10+2467775x12+O(x14)
Subtracting cosh2(x) from sinh2(x), we will have:
1+x2+13x4+245x6+1315x8+214715x10+2467775x12+...−
x2−13x4−245x6−1315x8−214715x10−2467775x12...=1
So we obtain the familiar identity: cosh2(x)−sinh2(x)=1
No comments:
Post a Comment