Here are the lists of Maclaurin series expanded on this blog:
ex=+∞∑n=0xnn! ∀x∈R or ∀x∈(−∞,+∞)
sin(x)=+∞∑n=0(−1)nx2n+1(2n+1)! ∀x∈R or ∀x∈(−∞,+∞)
sinh(x)=+∞∑n=0x2n+1(2n+1)! ∀x∈R or ∀x∈(−∞,+∞)
cos(x)=+∞∑n=0(−1)nx2n(2n)! ∀x∈R or ∀x∈(−∞,+∞)
cosh(x)=+∞∑n=0x2n(2n)! ∀x∈R or ∀x∈(−∞,+∞)
ex−1x=+∞∑n=0xn(n+1)! ∀x∈R or ∀x∈(−∞,+∞)
xex−1=+∞∑n=0∗Bnxnn! where ∗Bn are Bernoulli numbers, ∀x∈(−2π,2π)
x2coth(x2)=+∞∑n=0∗B2nxn2n! where ∗B2n are even Bernoulli numbers
coth(x)=+∞∑n=0B2n22nx2n−1(2n)! ∀x∈(−π,π)
cot(x)=+∞∑n=0(−1)nB2n22nx2n−1(2n)! ∀x∈(−π,π)
tan(x)=+∞∑n=0(−1)nB2n(1−2n)22nx2n−1(2n)!=+∞∑n=0(−1)n−1B2n(2n−1)22nx2n−1(2n)! ∀x∈(−π2,π2)
tanh(x)=+∞∑n=0B2n(2n−1)22nx2n−1(2n)! ∀x∈(−π2,π2)
11−x=+∞∑n=0xn ∀x∈(−1,1)
11−xk=+∞∑n=0xkn ∀x∈(−1,1)
11+x=+∞∑n=0(−1)nxn ∀x∈(−1,1)
11+xk=+∞∑n=0(−1)nxkn ∀x∈(−1,1)
log(1−x)=−+∞∑n=1(−1)2n+1xnn ∀x∈(−1,1)
−log(1−x)=+∞∑n=1xnn ∀x∈(−1,1)
log(1+x)=+∞∑n=1(−1)n+1xnn ∀x∈(−1,1)
(a+b)n=+∞∑i=0(ni)an−ibi
(1+x)n=+∞∑i=0(ni)xn∀x∈(−1,1)
No comments:
Post a Comment