Series representation of $\dfrac{1}{1-x}$
Thus $\dfrac{1}{1-x}=1+x+x^2+x^3+x^4+x^5+x^6+...$
Series representation of $\dfrac{1}{1+x}$
Thus $\dfrac{1}{1+x}=1-x+x^2-x^3+x^4-x^5+x^6+...$
Series representation of $\dfrac{1}{1+2x}$
Thus $\dfrac{1}{1+2x}=1-2x+4x^2-8x^3+16x^4-32x^5+64x^6+...$
$=1-2x+2^2x^2-2^3x^3+2^4x^4-2^5x^5+2^6x^6+...$
Series representation of $\dfrac{1}{1+3x}$
Thus $\dfrac{1}{1+3x}=1-3x+9x^2-27x^3+81x^4-243x^5+729x^6+...$
$=1-3x+3^2x^2-3^3x^3+3^4x^4-3^5x^5+3^6x^6+...$
Series representation of $\dfrac{1}{1+4x}$
Thus $\dfrac{1}{1+4x}=1-4x+16x^2-64x^3+256x^4-1024x^5+4096x^6+...$
$=1-4x+4^2x^2-4^3x^3+4^4x^4-4^5x^5+4^6x^6+...$
Series of the form of $\dfrac{1}{1+kx}$
Here I will list the first 10 series in this form:
$\dfrac{1}{1+x}=1-x+x^2-x^3+x^4-x^5+x^6+...$
$\dfrac{1}{1+2x}=1-2x+2^2x^2-2^3x^3+2^4x^4-2^5x^5+2^6x^6+$
$\dfrac{1}{1+3x}=1-3x+3^2x^2-3^3x^3+3^4x^4-3^5x^5+3^6x^6+$
$\dfrac{1}{1+4x}=1-4x+4^2x^2-4^3x^3+4^4x^4-4^5x^5+4^6x^6+...$
$\dfrac{1}{1+5x}=1-5x+5^2x^2-5^3x^3+5^4x^4-5^5x^5+5^6x^6+...$
In general:
$\dfrac{1}{1+kx}=1-kx+k^2x^2-k^3x^3+k^4x^4-k^5x^5+k^6x^6+...$
We can insert fractional values to $k$ to obtain the inverse of these series:
$\dfrac{1}{1+\dfrac{1}{2}x}=\dfrac{2}{x+2}=1-\dfrac{x}{2}+\dfrac{x^2}{2^2}-\dfrac{x^3}{2^3}+\dfrac{x^4}{2^4}-\dfrac{x^5}{2^5}+\dfrac{x^6}{2^6}...$
$\dfrac{1}{1+\dfrac{1}{3}x}=\dfrac{3}{x+3}=1-\dfrac{x}{3}+\dfrac{x^2}{3^2}-\dfrac{x^3}{3^3}+\dfrac{x^4}{3^4}-\dfrac{x^5}{3^5}+\dfrac{x^6}{3^6}...$
$\dfrac{1}{1+\dfrac{1}{4}x}=\dfrac{4}{x+4}=1-\dfrac{x}{4}+\dfrac{x^2}{4^2}-\dfrac{x^3}{4^3}+\dfrac{x^4}{4^4}-\dfrac{x^5}{4^5}+\dfrac{x^6}{4^6}...$
$\dfrac{1}{1+\dfrac{1}{5}x}=\dfrac{5}{x+5}=1-\dfrac{x}{5}+\dfrac{x^2}{5^2}-\dfrac{x^3}{5^3}+\dfrac{x^4}{5^4}-\dfrac{x^5}{5^5}+\dfrac{x^6}{5^6}...$
Series of the form of $\dfrac{1}{1-kx}$
$\dfrac{1}{1-x}=1+x+x^2+x^3+x^4+x^5+x^6+...$
$\dfrac{1}{1-2x}=1+2x+2^2x^2+2^3x^3+2^4x^4+2^5x^5+2^6x^6+$
$\dfrac{1}{1-3x}=1+3x+3^2x^2+3^3x^3+3^4x^4+3^5x^5+3^6x^6+$
$\dfrac{1}{1-4x}=1+4x+4^2x^2+4^3x^3+4^4x^4+4^5x^5+4^6x^6+...$
$\dfrac{1}{1-5x}=1+5x+5^2x^2+5^3x^3+5^4x^4+5^5x^5+5^6x^6+...$
In general
$\dfrac{1}{1-kx}=1+kx+k^2x^2+k^3x^3+k^4x^4+k^5x^5+k^6x^6+...$
No comments:
Post a Comment