We can use the definition of sinh(x) and cosh(x) as followed
Series representation of sinh(x):
sinh(x)=ex−e−x2
We know the series representation for ex:
ex=1+x1!+x22!+x33!+x44!+x55!+x66!+O(x7)
Replace x by −x, we have:
e−x=1−x1!+x22!−x33!+x44!−x55!+x66!−O(x7)
sinh(x)=12[1+x1!+x22!+x33!+x44!+x55!+...−(1−x1!+x22!−x33!+x44!−x55!+...)]
=12(1+x1!+x22!+x33!+x44!+x55!+...−1+x1!−x22!+x33!−x44!+x55!−...)
Red terms denote elimination
=2x2⋅1!+2x32⋅3!+2x52⋅5!+2x72⋅7!+2x92⋅9!+O(x11)
=x+x33!+x55!+x77!+x99!+x1111!+x1313!+O(x11)
Series representation of cosh(x):
cosh(x)=ex+e−x2
cosh(x)=12[1+x1!+x22!+x33!+x44!+x55!+...+(1−x1!+x22!−x33!+x44!−x55!+...)]
=12(1+x1!+x22!+x33!+x44!+x55!+...+1−x1!+x22!−x33!+x44!−x55!+...)
=22+2x22⋅2!+2x42⋅4!+2x62⋅6!+2x82⋅8!+2x102⋅10!+O(x12)
=1+x22!+x44!+x66!+x88!+x1010!+x1212!+O(x14)
We can try a few more examples to get the gist of these methods:
Series representation of ex+sin(x):
ex+sin(x)=(1+x1!+x22!+x33!+x44!+x55!+...)+(x−x33!+x55!−x77!+x99!...)
=1+2x+x22!+x44!+2x55!+x66!+x88!+2x99!+x1010!+x1212!...
Series representation of ex+cos(x):
ex+cos(x)=(1+x1!+x22!+x33!+x44!+x55!+...)+(1−x22!+x44!−x66!+x88!...)
=2+x33!+2x44!+x55!+x77!+2x88!+x99!+x1111!...
Series representation of ex−sin(x):
ex−sin(x)=(1+x1!+x22!+x33!+x44!+x55!+...)−(x−x33!+x55!−x77!+x99!...)
=(1+x1!+x22!+x33!+x44!+x55!+...)−x+x33!−x55!+x77!−x99!...
=1+x22!+2x33!+x44!+x66!+2x77!+x88!...
Series representation of ex−cos(x):
ex−cos(x)=(1+x1!+x22!+x33!+x44!+x55!+...)−(1−x22!+x44!−x66!+x88!...)
=(1+x1!+x22!+x33!+x44!+x55!+...)−1+x22!−x44!+x66!−x88!...
=x+2x22!+x33!+x55!+2x66!+x77!+x99!+2x1010!...
The last example involved two functions that we haven't yet derived since the last post. We will do this later. The series is beautiful in its own right and deserve a place on our blog:
Series representation of ln(1−x)+11−x:
ln(1−x)=−x−x22−x33−x44−x55−O(x6)=−+∞∑n=1xnn
11−x=1+x+x2+x3+x4+x5+O(x6)=1++∞∑n=1xn
ln(1−x)+11−x=1+(−x+x)+(−x22+x2)+(−x33+x3)+(−x44+x4)...
=1+12x2+23x3+34x4+45x5+56x6+67x7+O(x8)=1+∞∑n=0nn+1xn+1
or −+∞∑n=1xnn+1++∞∑n=1xn=1++∞∑n=1(xn−xnn)=1++∞∑n=1(1−1n)xn
No comments:
Post a Comment